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Abstract

In this technical report we compute the underestimation of the radius in the Radon
transform for circles and spheres. Our implementation of the Radon transform uses
spheres with a Gaussian profile, and normalises the grey-value of each of the spheres
so that a very large sphere matching only a couple of segments will not get a higher con-
fidence (value of the peak in the parameter space) than a very small sphere completely
matched in the image. This normalisation causes an underestimation of the radius.
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1 Introduction

The Radon transform for an N-dimensional hyper-sphere is defined as

P(x,r) = / Cy(p, ") I(x —p)dp . (1)
with
C L 1\/5 G(x:
06.7) = 550 (VA = 1) * Glxioy)
1
= 5ol = rioy) @)

the convolution kernel that defines the shape of the sphere, and I(x) the input image.
In these equations, Sy (r) is the surface area of the sphere of radius r. G(x; o) denotes
the Gaussian function:

Clxio) = L ()" 3)

(rv2m)"

Let us assume that the input image has a single sphere with a Gaussian profile
centered at x = 0, having a radius of R and a Gaussian parameter o;:

I(x) = G(Ix|| - B;03) 4

P(0,r), has a shape given by the integral of the product of two Gaussian curves (that
of Cy(x,r) and that of I(x)),

P(0,r) = / Cy(p,7) 1(0 — p) dp

1
- /—SN(T) G(|p|l = r;0p) G(Ip| — R; o) dp

= Sn(1) /000 SNl(T) G(p—ryop) G(p— R;0;) dp

The location of the maximum along r is then used as an estimate of the radius of the
sphere in the input image.
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Using the substitutions o2 = o2 + o2, ;1; = ;15 + % and s = o2 <—rg + a%), The
product of the Gaussians can be re-written as

Glo - wp Glp - Riory)

R;

1( 1 1(p—R)?
2 02 ) \V27mo; P ( 022

1
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p? 2pr—|—’r LP —2pR+R2])
+

exp

\/ 27rap

exp

27T0'p0'z
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r  RJ]* (r—R)?
27T0'p0'z [p ; Ue(a_f, * 0_22)} 202
_ Z_p‘; G(p— s;0¢) G(r — R; o)
=G(p—s;0.) G(r — R;04)
Using this, one obtains
_ SN(l) /oo N—1
P(O,T) = SN(?") G( R O's) ; P G( S o‘e) d,O
1 o0
= N-1 G( R Us)/s (x—i-S)N 1G(£E o) dx
N-1
1 & N
= 1 G( Ras/ Z(k) NG (25 0,) da
=% k=0
N-1
1 N —
= N1 G(r — R;o,) ( ) Nk 1/ 2*G(z;0.) da (5)
k=0 —s

The integral can be split

o0 [ee] —S
/ 2" G(z;00) dx = / 2*G(z;0.) dx +/ *G(z;0.) dz |
0 0

—S

but this does not lead us anywhere. The first term is the Gamma function, and the
second term is called the incomplete Gamma function, and does not have a closed
solution. Thus we need to choose a dimensionality at this stage.

2 The 2D case

P(0,r) = % Glr — Roy) / (& + )G(w: 00) da ©)
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The solution to the integral is given by

s G(z;0.) dx —|—/ 2G(z;0.) dx

- ) - —s )
=5 [/ G(z;0.) do — G(z;0¢) dx] -1—/ xG(z;0¢) do
0 0 —s
—s

\/§Ue

Assuming R > 30; or so (if this is not true, the input image will not have recognizable
circles), and knowing that the position of the peak is close to its expected location,
r ~ R, it can be assumed that R > 30.. This means that the error function takes a
value of approximately —1, and the Gaussian of 0.

=5 [1 — erf( )] + 02 G(—s;0.)

) 1 R
P(0,r) = = G(r = Rio,) = 207 (p + ﬁ) G(r — R o)
D i

To find the position of the maximum, we equate the derivative to zero.

P ,[-R (1 R\R-r
%%208[W+( +T)—:|G(T—R,O's):0

2 2
o, oir o

Solving for = r — R yields

R R—r R:—Rr

0=
2.2 242 252
orr 0p0% o;oT

i
= 0= U?O’IQ,R — 0ZRr? 4 o3 — U§R2T + UZ%R’I"2

= o223 + (207 + JIQJ)R:U2 + 02R%x + agaiR ,
a third-degree equation. Again assuming R > o; and x is close to 0,
0~ (207 + aﬁ)R:vQ +02R%r + a?aﬁR

has a simpler solution. We select the root closest to 0.

_ 2R 4R2 0'20'2
Os )_|_\/ Os _ s°P (7)

"~ 2(207 + 02 4207 +02)2 (207 +02)

A fifth-order approximation around 1/R = 0 of this is given by

o2 0402+202-2 _
2 2
- _”_}g - % (02 +02) + 0 (R™) (8)

Note that both o, and o. depend on the input image, but the first term (which is good
for an approximation of the third order), depends only on ¢, defined by the algorithm.
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3 The 3D case
1
POT) = 5 G~ Riay) [

—S

C>0(33 + 5)2G(x; 0,) dx 9)

The solution to the integral is given by

[ee)

[e.e] o
s G(x;0¢) dr + 25/ xG(z;0.) dx +/ 22G(z;00) da

—S —S

{partial integration of last term}

=32/ G(z;0¢) daz+2s/

—S
[e.e]

+a§/ G(z;0.) dx

—S

—S

o0 oo

2G(x;0.) do — 022G (2;00)

—S

= (s> 4+ 02) [/OOG(:U'U)dJJ— _SG(w'a)dm] +2S/M$G(x'a)d$
- e yYe yYe yvYe
0 0 —s

o
— 022G (x;0.)

—S

= (s2+0?) [1 - erf(\/_;j : )] + 025 G(—s;00)

Again the error function takes a value of approximately —1, and the Gaussian of 0.

P0,r) ~ 5 (5 +02) Glr— Rio)

To find the position of the maximum, we equate the derivative to zero.

dP 2 |2 (UZ.QT + O'gR) 0'i2
dr cr_;1 72
G(r—R;05) =0

(0fr+02R)* + olo20? (R—r 2
2 o? r

r

Solving for = r — R yields
02 (021 + 02R) o? N (o2r +02R)* + 020202 (R—r 2
r2 r2 o? r

= 0=2 (afr + O'f,R) ololr + <(az-2r + agR)2 +o

30%03) (R’I" —r? - 20?)

2 2) 0_21,2

= o}z" + (07 4+ 202)07 Ra® + ((207 + 02)R* + 0,0;
+ (O’?R2 + 3012)022) o?Rx + 2(R* + 022)020;1
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a fourth-degree equation. Again assuming R > ¢; and z is close to 0,

0~ ((207 + 02)R* + 012,02»2) z® + (02R* + 3012,01-2) Rz +2(R* + 02»2)012)02

S

has a simpler solution. We select the root closest to 0.

— (03R*+30707) R
v 2(207 4 02)R? + 20207

(02R? + 30%0?)2 R? 2(R? + 07)o20?
(2(202 + 02)R? + 20%012)2 (207 + 02)R? + 0l0}

A fifth-order approximation around 1/R = 0 of this is given by

2 20 4 2 2 4
20 %& 20p + 40'pO'i +o;

Tr =~ _?p - R3 O_g + O (R_5)
202 252
~ 2 2 s ot o) O (R) (10)

As in the 2D case, the first term (which is good for an approximation of the third order),
depends only on o, defined by the algorithm.

4 Kernel normalization

To show that the most important part of the under-estimation of the radius is caused by
the normalisation, we compute the position of the maximum along the r-axis of Cy(x, ).
We expect this maximum to be close to ||x|| = R. We recall the definition of Cj(x, ),

K
G(R - T§Up) )

G(|Ix|| =75 0p) = T

with K some constant that depends on the dimensionality V. The derivative along r is
given by

dCy _ [~(N=1)  R-r
dr riv U%TN_l

Equating it to zero and solving for x = r — R yields

G(R —r;0p)

B N -1 R—r _ _ 9 _
0=- N o2 NI (N=1)o, +(R=7)r
—(N-1)o?—a(x+R) ,
N -1)2 (N -1)%0,
PSR G\ Bl )UP+O(R_5) . (11)

R R3

This explains the first term of equations (8) and (10), as well as a portion of the second
term. The rest of those equations is due to the asymmetry of the peak resulting from the
convolution. This asymmetry is caused by the curvature of the two interacting shapes.
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To correct for this bias, we need to draw the kernel with an alternate radius R’. This
should be selected such that the maximum in the r-direction lies exactly at . For larger
R this is:

(N —1)o?
R/
= 0=R?’-rR +(N-1)o;

r=R+

= R’=1r+\/1r2—(zv—1)o—g . (12)

2 4
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